Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th
5.2 Binary Convolutional Codes

Binary Convolutional Codes

- The encoding is done on a continuous running basis rather than by blocks of k data digits.
- So, we use the terms bit streams or sequences for the input and output of the encoder.
- In theory, these sequences have infinite duration.
- In practice, the state of the convolutional code is periodically forced to a known state and therefore code sequences are produced in a block-wise manner.

Binary Convolutional Codes

- Introduced by Elias in 1955
- There, it is referred to as convolutional parity-check symbols codes.
- Peter Elias received
- Claude E. Shannon Award in 1977
- IEEE Richard W. Hamming Medal in 2002
- for "fundamental and pioneering contributions to information theory and its applications
- The encoder has memory.
- In other words, the encoder is a sequential circuit or a finitestate machine.
- Easily implemented by shift register(s).
- The state of the encoder is defined as the contents of its memory.

(Serial-in/Serial-out) Shift Register

- Accept data serially: one bit at a time on a single line.
- Each clock pulse will move an input bit to the next FF. For example, a 1 is shown as it moves across.
- Example: five-bit serial-in serial-out register.

Graphical Representations

- Three different but related graphical representations have been devised for the study of convolutional encoding:

1. the state diagram
2. the code tree
3. the trellis diagram

Example 1: $n=2, k=1$

Ex. 1: State (Transition) Diagram

- The encoder behavior can be seen from the perspective of a finite state machine with its state (transition) diagram.

A four-state directed graph that uniquely represents the input-output relation of the encoder.

$$
1 \rightarrow 0, \square \rightarrow \overbrace{\oplus}^{\rightarrow+} \rightarrow
$$

Drawing State Diagram

75

Tracing the State Diagram to Find the Outputs

79)

Input

$\begin{array}{lllllll}\text { Output } & 11 & 01 & 01 & 00 & 01 & 10\end{array}$

Two branches initiate from each node, the upper one for 0 and the lower one for 1.

-

Show the coded output for any possible sequence of data digits.

Code Tree

Initially, we

 always assume that all the contents of the register are 0 .Start $=00$

Code Trellis

(3)

Another useful Towards the Trellis Diagram way of representing the code tree.

Trellis Diagram

egister are 0

Each path that traverses through the trellis represents a valid codeword.

Directly Finding the Output

Direct Minimum Distance Decoding

- Suppose $\boldsymbol{y}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 11\end{array}\right]$.
- Find $\underline{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}. - $\underline{\hat{\hat{x}}}=\arg \min _{\underline{x}} d(\underline{\mathbf{x}}, \underline{\mathbf{y}})$

Direct Minimum Distance Decoding

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 0 & 1 & 11\end{array}\right]$.
- Find $\hat{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\underline{\hat{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

Direct Minimum Distance Decoding

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right]$.
- Find $\underline{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

$\underline{\mathbf{b}}$	$d(\mathbf{x}, \mathbf{y})$
000	$2+1+2=5$
001	$2+1+0=3$
010	$2+1+1=4$
011	$2+1+1=4$
100	$0+2+0=2$
101	$0+2+2=4$
110	$0+0+1=1$
111	$0+0+1=1$

Viterbi decoding

- Developed by Andrew J. Viterbi
- Also co-founded Qualcomm Inc.
- Published in the paper "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm", IEEE Transactions on Information Theory, Volume IT-13, pages 260-269, in April, 1967.

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array} 1\right.$].
- Find $\hat{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

Each circled number at a node is the running (cumulative) path metric, obtained by summing branch metrics (distance) up to that node. Here, it is simply the cumulative distance.

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{lll}1 & 1 & 01 \\ 11\end{array}\right]$.
- Find $\underline{\hat{\mathbf{b}}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 11\end{array}\right]$.
- Find $\underline{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1\end{array}\right]$.
- Find $\hat{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

- For the last column of nodes each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.
- We discard the largerdistance path because, regardless of what happens subsequently, this path will have a larger Hamming distance from \mathbf{y}.

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{lll}1 & 1 & 0\end{array} 111\right.$.
- Find $\underline{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\underline{\hat{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

Note that we keep exactly one (optimal) survivor path to each state.
(Unless there is a tie, then we keep both or choose any.)

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 11\end{array}\right]$.
- Find $\underline{\hat{\mathbf{b}}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\hat{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

104

Viterbi Decoding: Ex. 2

- Suppose $\boldsymbol{y}=\left[\begin{array}{lllll}11 & 01 & 11 & 00 & 01\end{array}\right.$ 10 $]$.
- Find $\underline{\mathbf{b}}$.

(107)

Viterbi Decoding: Ex. 2

- Suppose $\boldsymbol{y}=\left[\begin{array}{lllll}11 & 0 & 11 & 00 & 01\end{array}\right.$ 10 $]$.
- Find $\underline{\mathbf{b}}$.

108

Viterbi Decoding: Ex. 2

- Suppose $\boldsymbol{y}=\left[\begin{array}{lllll}11 & 01 & 11 & 00 & 01 \\ 10\end{array}\right]$.
- Find $\underline{\mathbf{b}}$.

109

Viterbi Decoding: Ex. 2

- Suppose $\boldsymbol{y}=\left[\begin{array}{lllll}11 & 01 & 11 & 00 & 01 \\ 10\end{array}\right]$.
- Find $\underline{\hat{\mathbf{b}}}$.

Viterbi Decoding: Ex. 3

- Suppose $\boldsymbol{y}=\left[\begin{array}{lllll}01 & 10 & 11 & 10 & 00 \\ 00\end{array}\right]$.

$$
\begin{aligned}
& \underline{\hat{\mathbf{x}}}=\left[\begin{array}{lllllll}
11 & 10 & 11 & 0 & 00 & 00
\end{array}\right] \\
& \underline{\hat{\mathbf{b}}}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Reference

- Chapter 15 in [Lathi \& Ding, 2009]
- Chapter 13 in [Carlson \& Crilly, 2009]
- Section 7.11 in [Cover and Thomas, 2006]

